
PFOS and PFOA in Missouri

Targeted Sampling Done for Public Drinking Water Systems

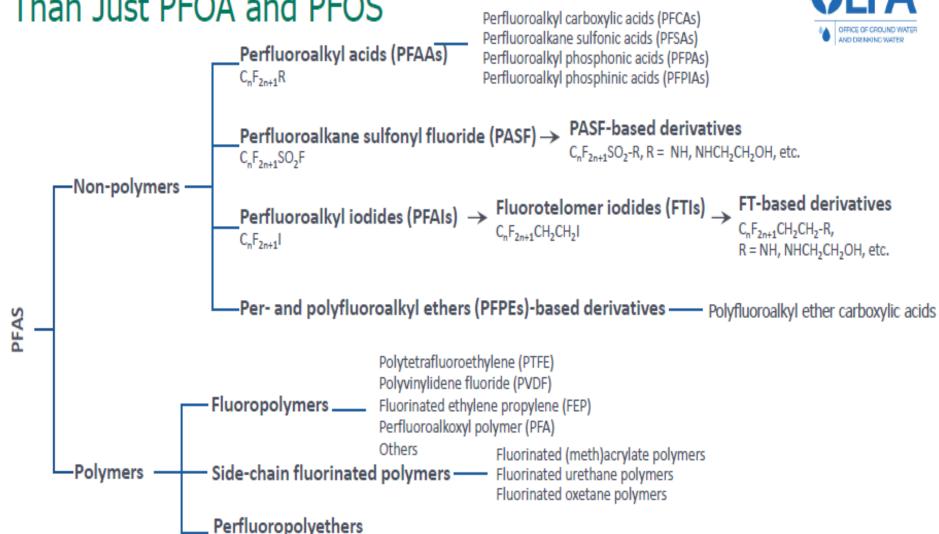
Eric Medlock

Per- and Polyfluoroalkyl Substances (PFAS)

> A class of man-made chemicals

- Chains of carbon (C) atoms surrounded by fluorine (F) atoms
 - Water-repellent (hydrophobic)
 - Stable C-F bond
- Some PFAS include oxygen, hydrogen, sulfur and/or nitrogen atoms, creating a polar end

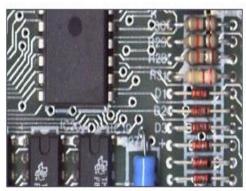
Perfluorooctanoic acid (PFOA)


Perfluorooctanesulfonic acid (PFOS)

PFAS: More

Than Just PFOA and PFOS

Used in Homes, Businesses & Industry

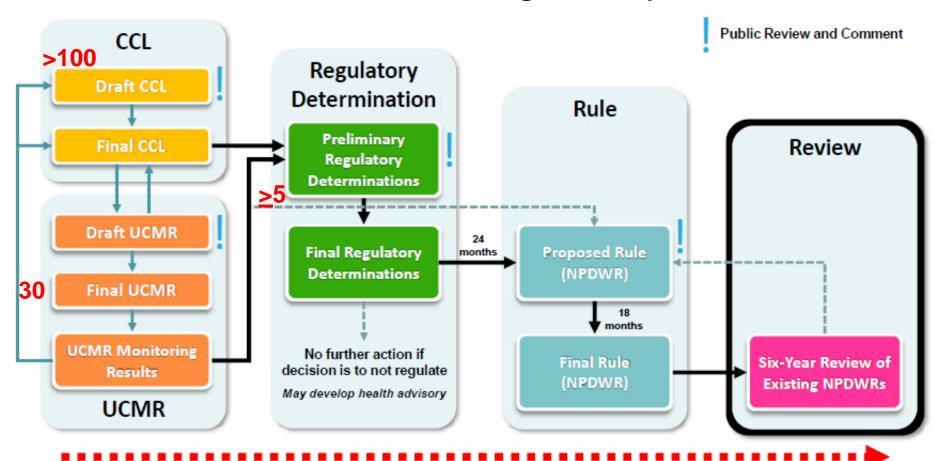


- Food contact surfaces such as cookware, pizza boxes, fast food wrappers, popcorn bags, etc.
- Polishes, waxes, and paints
- Stain repellants for carpets, clothing, upholstered furniture, etc.
- Cleaning products
- Dust suppression for chrome plating
- Electronics manufacturing
- Oil and mining for enhanced recovery
- Performance chemicals such as hydraulic fluid, fuel additives, etc.

Sources of PFAS in the Environment

- Direct release of PFAS or PFAS products into the environment
 - Use of aqueous film forming foam (AFFF) in training and emergency response
 - Release from industrial facility
- Chrome plating and etching facilities
- Landfills and leachates from disposal of consumer and industrial products containing PFAS
- Wastewater treatment effluent and land application of biosolids

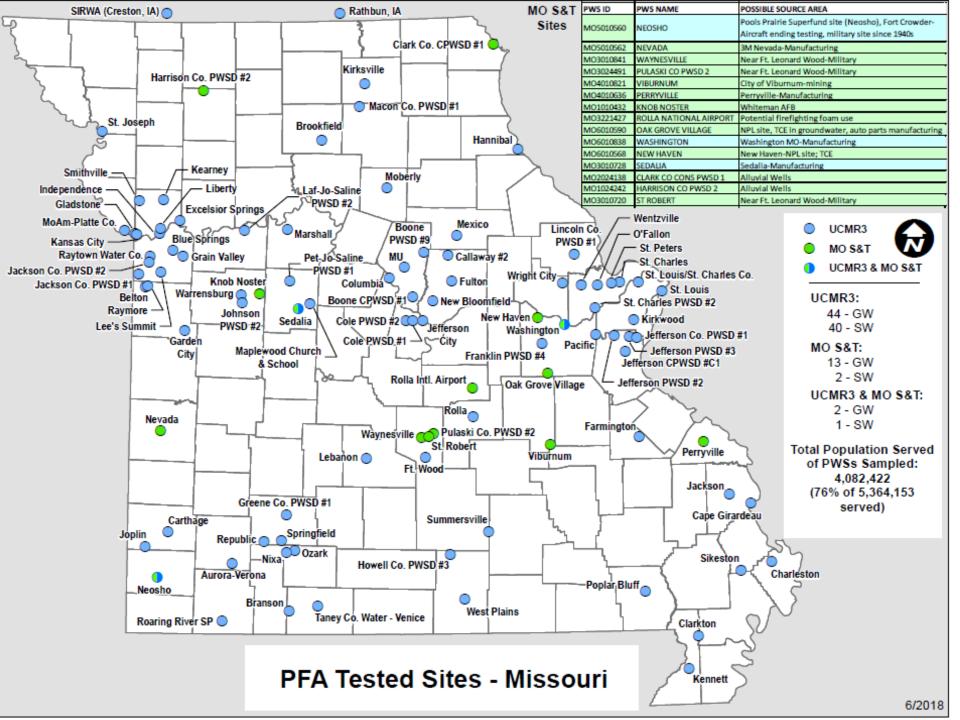
Potential Reasons for Concern


- Known or suspected toxicity
- PFAS and/or breakdown products are persistent in the environment
- Persistence in biota vary greatly across PFASs and species
- Used by a variety of industries
- Found in a variety of consumer products
- Most people have been exposed to PFAS

General Flow of SDWA Regulatory Processes

PFAS Background (continued)

- In 2009, EPA established provisional health advisories (HAs) for PFOA at 400 parts per trillion (ppt) and for PFOS at 200 ppt, even though an EPA health effects review was underway.
- In May 2016, EPA released revised HAs for PFOA and PFOS set individually and combined at 70 ppt.



NATURAL RESOURCES										
			Level							
State	Drinking Water Action	Compound	(ppt)							
California	Interim Response Levels	Sum of PFOA and PFOS	70							
		Sum of PFOA, PFOS,								
Connecticut	Action Level	PFNA, PFHxS, PFHpA	70							
Maine	Maximum Exposure Guidelines	Sum of PFOA and PFOS	70							
	Office of Research & Standards	Sum of PFOA, PFOS,								
Massachusetts	Guideline	PFNA PFHxS, PFHpA	70							
	Health Based Guidance for Water	PFOA	35							
Minnesota		PFOS	27							
	Surrogate of PFOS HBV	PFHxS	27							
New Hampshire	Groundwater Quality Standards	Sum of PFOA and PFOS	70							
Name In space	Proposed Regulation	PFNA	13							
New Jersey	Regulation in Development	PFOA	14							
North Carolina	Health Advisory	GenX	140							
		Sum of PFOA, PFOS,								
	Groundwater Quality Enforcement	PFNA, PFHxS, and								
Vermont	Standards	PFHpA	20							
West Virginia	EPA Health Advisory	Sum of PFOA and PFOS	70							

HAs Versus Regulatory Standards Create Challenges

- Use of HAs as guidance, versus a Safe Drinking Water Act (SDWA) regulation with an established Maximum Contaminant Level (MCL) creates challenges for state drinking water programs and public water systems.
- The HAs for PFOA and PFOS do not provide clarity on necessary actions for water systems to address the compounds, and how to communicate their actions and the associated health risks to the public.

MOS&T PFOA & PFOS Results

Facility	Sample	September 2016		February 2017		Facility	Sample	September 2016		February 2017	
Number	Site	PFOA (ppt)	PFOS (ppt)	PFOA (ppt)	PFOS (ppt)	Number	Site	PFOA (ppt)	PFOS (ppt)	PFOA (ppt)	PFOS (ppt)
	Raw	0.68	1.04	0.42	1.59		Raw	<0.2	0.43	0.28	0.43
1	Finished	0.67	1.05	0.31	0.60	9	Finished	<0.2	0.46	0.29	0.54
	Raw	<0.2	<0.2	0.57	0.50		Raw	<0.2	<0.2	<0.2	<0.2
2	Finished	<0.2	<0.2	<0.2	<0.2	10	Finished	<0.2	<0.2	<0.2	<0.2
	Raw	0.43	<0.2	<0.2	<0.2		Raw	<0.2	<0.2	N/A	N/A
3	Finished	0.26	<0.2	<0.2	<0.2	11	Finished	0.41	<0.2	<0.2	<0.2
	Raw	N/A	N/A	N/A	N/A		Raw	<0.2	<0.2	<0.2	<0.2
4	Finished	<0.2	0.32	<0.2	0.30	12	Finished	<0.2	1.21	<0.2	<0.2
	Raw	<0.2	<0.2	<0.2	<0.2		Raw	<0.2	<0.2	<0.2	<0.2
5	Finished	<0.2	<0.2	<0.2	<0.2	13	Finished	<0.2	<0.2	<0.2	<0.2
	Raw	0.66	0.68	0.24	0.29		Raw	0.35	<0.2	N/A	N/A
6	Finished	0.51	0.72	0.24	0.27	14	Finished	0.31	<0.2	N/A	N/A
	Raw	<0.2	<0.2	<0.2	<0.2		Raw	<0.2	0.25	<0.2	0.24
7	Finished	0.30	0.82	<0.2	<0.2	15	Finished	<0.2	0.25	<0.2	0.24
	Raw	<0.2	<0.2	<0.2	<0.2						
8	Finished	<0.2	<0.2	<0.2	<0.2						

PFOS and PFOA in Missouri

Targeted Sampling Done for Public Drinking Water Systems

Eric Medlock

Chemical Monitoring Coordinator Public Drinking Water Branch

Phone: (573) 522-5028

Email: eric.medlock@dnr.mo.gov