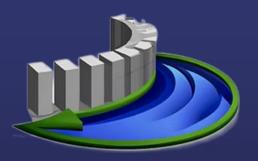
Detention vs Retention

REGFORM Water Seminar, July 2025

Understanding Options & Picking the Right Tool

Introductions

Kevin Cassil


Principal Strategic Services Manager Environmental Works, Inc.

Jay Bergeron

Principal

Stormwater Dynamic Solutions

The Choice Matters

Why Does This Matter?

Improving Management, Effectiveness, & Compliance

Detention/retention decisions affect:

- Compliance with NPDES
- Long-term maintenance liabilities
- Flooding, erosion, and stream impairment

Regulatory inspections now emphasize performance, not just installation

What's the Difference?

Detention (Dry basin)

- Temporary Storage
 - Dry Between Storms
- Controls Peak Discharge
 - MS4/NPDES

<u>Municipal Separate Storm</u> <u>Sewer System</u>

National Pollutant Discharge Elimination System (NPDES)

Retention (Wet basin/pond)

- Permanent Pool
 - Buffers & Slow Release
- Enhances Water Quality
 - TMDL

Total Maximum Daily Load

At A Glance

Water Presence

Primary Purpose

Water Quality Treatment

Maintenance

Aesthetic/Recreational Value

Vector/Mosquito Risk

Land Required

Suitable for Dense Urban Sites

Detention Basin

Temporary

Peak Flow

Reduction

Limited

Low to Moderate

Low

Low

Less

Yes

Retention Pond

Persistent

Water Quality &

Flow Control

Enhanced

Moderate to High

High

Moderate – High

More

Rarely

When Detention is the Better Fit

- Better For:
 - Flood Control
 - Limited Space
 - Groundwater Recharge is not Needed
 - Vector or Aesthetic Limitations
 - Limited Maintenance

- Typical Applications:
 - Industrial or Commercial
 - Parking Lots
 - Urban Infill
 - Streams Requiring Peak Flow Management

When Retention Adds Strategic Value

• Better For:

- Water Quality Treatment and Nutrient Removal
- Adding Aesthetic or Recreational Value
- Promoting Infiltration and Groundwater Recharge
- High-Volume Runoff Lower Permeability Soils

Typical Applications:

- Residential Subdivisions and Campuses
- Commercial Sites with Open Land
- Industrial Sites Needing Quality Improvement
- Sites targeting ESG or green infrastructure goals

How Do I Choose?

The Basics

- Consider Each Watershed Separately
- Issues You Need/Want to Address
 - Possible Mutual Benefits
- How Much Space
 - Needed
 - Available
 - Think 3-D
- New or Retrofit
- Regulatory & Community Status
- Budget Constraints

You Have Options

- Hybrid Basins a little of both
- Subsurface Basins
 - Space Utilization
 - Design & Approval Considerations
 - Maintenance Considerations
- Zero or Indirect Discharge
 - Evaporative Basins
 - Infiltration Basins
 - Land Application Basins

Some of Both

Hybrid Basins

Hybrid Basins

Examples:

- Detention with internal forebay (pretreatment)
- Extended detention + wet pool
- Step-wise system (bioretention -> vault -> basin)
- Underground chambers with vegetation above

More on Hybrid Basins

Multi-stage, integrated stormwater system that blends natural features with engineered controls.

Some sites take advantage of their existing topography, soil types, and natural drainage patterns to design a more integrated or hybridized stormwater control system.

Rather than relying on a single detention or retention basin, these sites may create a series of interconnected BMPs, each with a specific treatment role.

Engineering and Construction Fundamentals

Key Design and Code-Based Requirements

• See local municipal guides (Some are too prescriptive)

Important Examples

- <u>Drainage Flow</u>: Inlet and outlet pipes should be sized for 2-, 10-, and 100-year storm
- <u>Freeboard & Overflow</u>: Minimum 1–3-foot freeboard above 100-year storm level; emergency spillways must be armored or reinforced
- <u>Residence Time</u>: Typical retention pond design targets 24–72 hours to promote sedimentation and nutrient reduction

Engineering - Liners

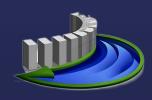
Why & When Liners Are Needed

- Groundwater contamination risk
- Prevent infiltration near critical infrastructure
- Required for Superfund, Brownfields, and regulated pollutants
- Persistent bypasses
- Local TMDL development (upstream users can impact you)

Engineering - Liners

Liner Type	Material	Best Use Cases	Pros	Cons
Compacted Clay	Natural clay soil	Rural sites, low-cost retrofits	Low cost, natural materials	Requires 12–24" thickness, prone to drying/cracks
Geosynthetic Clay Liner (GCL)				Costlier than native clay, not good on steep slopes
HDPE Geomembrane		Industrial sites, high-risk pollutant containment	Highly impermeable, chemical-resistant	Requires anchoring, vulnerable to punctures
PVC Geomembrane	Flexible vinvi	Small basins with complex shapes	Flexible, conforms to irregular geometry	UV degradation risk, less chemical resistance
Concrete	•		Extremely durable, minimal maintenance	Very high cost, needs structural support
Spray-on Liner (Polyurea or EPDM)		Retrofitting old basins, irregular surfaces	Seamless, adaptable to shapes	Surface prep critical, shorter lifespan

Engineering - Liners

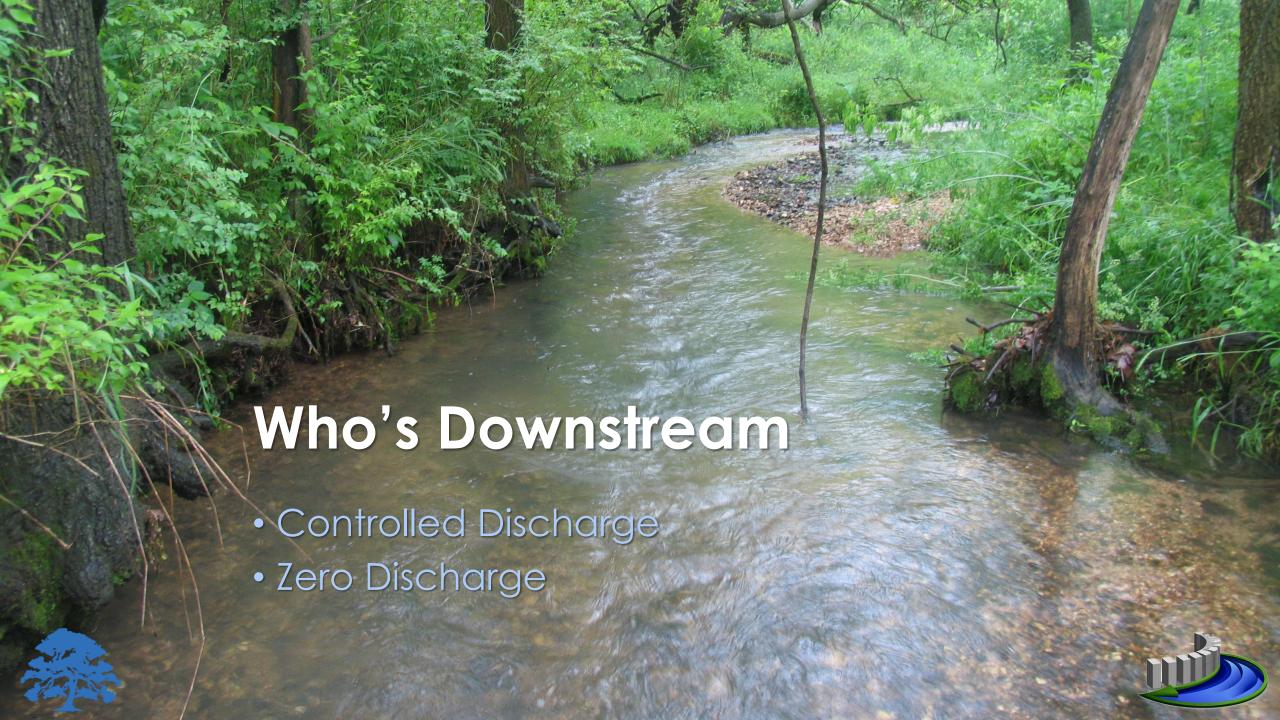

The liner you choose sets physical and regulatory boundaries for what your basin can do, and sometimes it's the first clue to what kind of basin you really need.

Challenges

Cramped for Space

- 3-D Solutions
 - Optimize Space
 - Operation & Maintenance

Neighbors


- What's Upgradient
- Shared Basins

Maintenance & Compliance

Maintenance

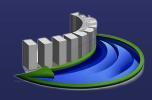
Why Maintenance Is Non-Negotiable

Poor or infrequent maintenance is a top violation trigger under NPDES.

Maintenance failure leads to:

Sediment accumulation → lost storage volume

Vegetation overgrowth \rightarrow obstructions \rightarrow mask, burrows, permanent root intrusion into underdrains, clogs, erosion, structural damage and blowouts


Algae blooms → benchmark exceedance

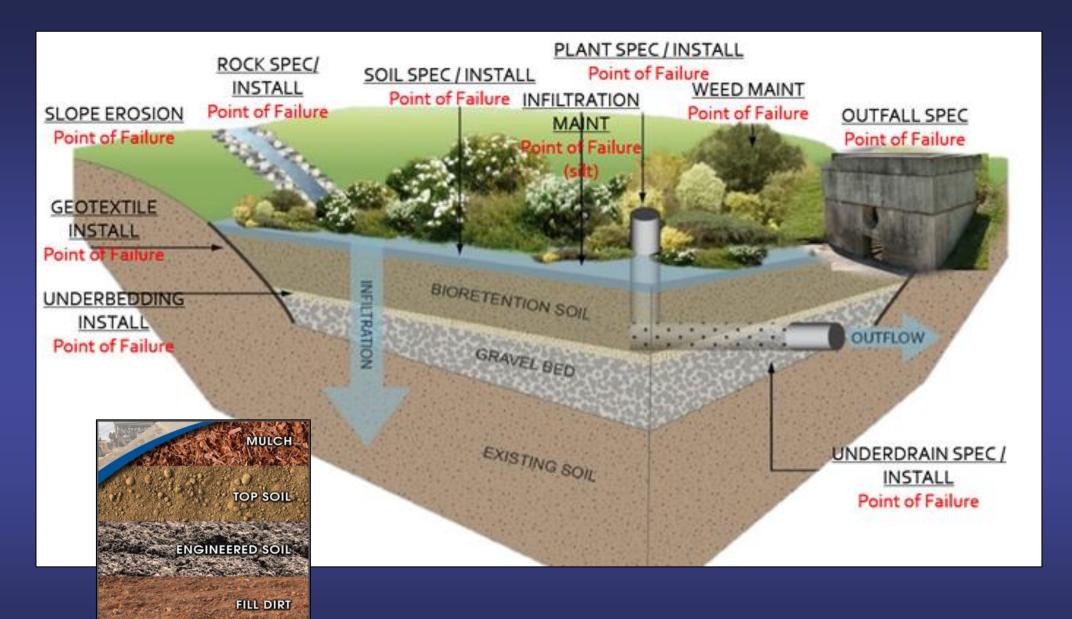
Trash/debris blockages → flooding & infrastructure damage

Maintenance

Why Maintenance Is Non-Negotiable

MoDNR - 10 CSR 20-6.200 BMP expectations

Regular forebay and basin sediment removal, even maintenance. <u>Failure = violation</u>


Maintenance Quick case study

"We thought it was just a grass ditch until it backed up and flooded the building/impacted adjacent property. It cost more to fix than it did to build."

— Facility Operations Manager

AGGREGATES

Plans Required

What Are the Minimums?

- 1. Stormwater Pollution Prevention Plan (SWPPP)
- 2. Outfall Identification Map
- 3. Facility Site Map with Flow Arrows
- 4. Engineering As-Built or Design Drawings
- 5. Maintenance Plan / BMP O&M Schedule
- 6. Inspection Checklists & Logs
- 7. Algae Control or Vegetation Management Plan
- 8. Shared Use Agreement or Maintenance Easement

Activities Required

What might you really need to do?

- 1. Visual Inspection of Basin
- 2. Trash & Debris Removal (Inlets & Outlets)
- 3. Sediment Depth Monitoring
- 4. Sediment Removal (Dredging)
- 5. Vegetation Maintenance (Trimming, Mowing)
- 6. Native Plant Management

Activities Required

What might you really need to do?

- 7. Inlet/Outlet Structure Inspection
- 8. Emergency Spillway Inspection
- 9. Algae Monitoring and Treatment
- 10. Mosquito Prevention (Stagnant Water Control)
- 11. Outfall Inspection & Cleaning
- 12. Check Dam Inspection
- 13. Recordkeeping & Log Entry


Documentation, data storage and recall,?

Mapping a Strategy

Options & Design

- Ongoing Obligations
- Living Infrastructure
- What is the Facility's Future
- Is Retrofit Needed?

Planning & Implementation

- Start Early
- Consider Your Objectives
- Consider Your Setting
- Integrate Solutions

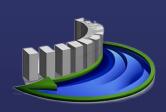
Contact Us

J. Kevin Cassil

Principal, Strategic Services Manager Environmental Works, Inc.

417.225.8040

kcassil@enviroonmentalworks.com



Jay Bergeron

Principal Stormwater Dynamic Solutions 314.690.3202

ay@stormwaterdynamicsolutions.com

